Search results for "Radiation hardness"

showing 10 items of 10 documents

Impact of Gamma Radiation on Dynamic RDSON Characteristics in AlGaN/GaN Power HEMTs

2019

GaN high-electron-mobility transistors (HEMTs) are promising next-generation devices in the power electronics field which can coexist with silicon semiconductors, mainly in some radiation-intensive environments, such as power space converters, where high frequencies and voltages are also needed. Its wide band gap (WBG), large breakdown electric field, and thermal stability improve actual silicon performances. However, at the moment, GaN HEMT technology suffers from some reliability issues, one of the more relevant of which is the dynamic on-state resistance (R) regarding power switching converter applications. In this study, we focused on the drain-to-source on-resistance (R) characteristic…

Materials scienceassurance testingRadiation effects02 engineering and technologyHigh-electron-mobility transistorradiation hardness01 natural scienceslcsh:Technologylaw.inventiontotal ionizing dose (TID)lawPower electronics0103 physical sciencesGeneral Materials Sciencelcsh:MicroscopyHigh-electron-mobility transistor (HEMT)Radiation hardeningLeakage (electronics)lcsh:QC120-168.85010302 applied physicsRadiation hardnessAssurance testinghigh-electron-mobility transistor (HEMT)lcsh:QH201-278.5business.industrylcsh:TTransistorWide-bandgap semiconductor021001 nanoscience & nanotechnologyThreshold voltageSemiconductorlcsh:TA1-2040Gallium nitride (GaN)adiation effectsradiation effectsOptoelectronicslcsh:Descriptive and experimental mechanicslcsh:Electrical engineering. Electronics. Nuclear engineeringTotal ionizing dosegallium nitride (GaN)0210 nano-technologybusinesslcsh:Engineering (General). Civil engineering (General)lcsh:TK1-9971Materials
researchProduct

Ionizing radiation effects on Non Volatile Read Only Memory cells

2012

Threshold voltage (V-th) and drain-source current (I-DS) behaviour of nitride read only memories (NROM) were studied both in situ during irradiation or after irradiation with photons and ions. V-th loss fluctuations are well explained by the same Weibull statistics regardless of the irradiation species and total dose. Results of drain current measurements in-situ during irradiation with photons and ions reveal a step-like increase of I-DS with the total irradiation dose. A brief physical explanation is also provided.

Nuclear and High Energy PhysicsPhotonMaterials sciencebusiness.industrynitride read-only memories (NROM)Nitrideradiation hardnessFlash memoriesFlash memoryIonizing radiationThreshold voltageIonoxide/nitride/oxide (ONO)Terms—Flash memories nitride read-only memories (NROM) oxide/nitride/oxide (ONO) radiation hardness.Nuclear Energy and EngineeringOptoelectronicsIrradiationElectrical and Electronic EngineeringbusinessRadiation hardening
researchProduct

The pion single-event latch-up cross-section enhancement : mechanisms and consequences for accelerator hardness assurance

2021

Pions make up a large part of the hadronic environment typical of accelerator mixed-fields. Characterizing device cross-sections against pions is usually disregarded in favour of tests with protons, whose single-event latch-up cross-section is, nonetheless, experimentally found to be lower than that of pions for all energies below 250 MeV. While Monte-Carlo simulations are capable of reproducing such behavior, the reason of the observed pion cross-section enhancement can only be explained by a deeper analysis of the underlying mechanisms dominating proton-silicon and pion-silicon reactions. The mechanisms dominating the single-event latchup response are found to vary with the energy under c…

cross-sectionprotonitpiiprotonsacceleratorionisoiva säteilyNuclear TheoryneutronshiukkaskiihdyttimetelektroniikkakomponentitFLUKAsäteilyfysiikkaSELradiation hardness assurancenuclear interactionspionsNuclear Experiment
researchProduct

Radiation Hardness Assurance Through System-Level Testing: Risk Acceptance, Facility Requirements, Test Methodology, and Data Exploitation

2021

International audience; Functional verification schemes at a level different from component-level testing are emerging as a cost-effective tool for those space systems for which the risk associated with a lower level of assurance can be accepted. Despite the promising potential, system-level radiation testing can be applied to the functional verification of systems under restricted intrinsic boundaries. Most of them are related to the use of hadrons as opposed to heavy ions. Hadrons are preferred for the irradiation of any bulky system, in general, because of their deeper penetration capabilities. General guidelines about the test preparation and procedure for a high-level radiation test ar…

Small satelllitessmall satellitesComputer scienceRadiation effects02 engineering and technologytest methodology01 natural sciencesSpace missionsSpace explorationsystem-level testing0202 electrical engineering electronic engineering information engineeringRadiation hardeningTechnik [600]Reliability (statistics)avaruustekniikka[PHYS]Physics [physics]protonselektroniikkalaitteetrisk acceptance[PHYS.PHYS.PHYS-SPACE-PH]Physics [physics]/Physics [physics]/Space Physics [physics.space-ph]Commercial off-the-shelf (COTS)Test (assessment)facilitiesPerformance evaluationTotal ionizing doseSystem verificationtestmethodologyNuclear and High Energy Physicstotal ionizing dose (TID)0103 physical scienceselektroniikkaRadiation hardening (electronics)Electrical and Electronic Engineeringsingle-event effect (SEE)Functional verification010308 nuclear & particles physics600: Technikneutrons020206 networking & telecommunicationsTest methodSystem level testingReliability engineering[SPI.TRON]Engineering Sciences [physics]/ElectronicsNuclear Energy and EngineeringtestausmenetelmätsäteilyfysiikkaOrbit (dynamics)radiation hardness assurancejärjestelmätddc:600
researchProduct

Technology of p-type microstrip detectors with radiation hard p-spray, p-stop and moderated p-spray insulations

2007

5 pages, 8 figures.-- PACS nrs.: 29.40.Gx; 29.40.-- ISI Article Identifier: 000249604700010.

PhysicsRadiation hardnessNuclear and High Energy PhysicsFabricationbusiness.industryDetectorCapacitanceMicrostripMicrostrip detectorsSuper-LHCInsulationCalibrationOptoelectronicsbusiness[PACS] Tracking and position-sensitive detectorsInstrumentationRadiation hardeningDiodeVoltage
researchProduct

Design and test of a prototype silicon detector module for ATLAS Semiconductor Tracker endcaps

2005

The ATLAS Semiconductor Tracker (SCT) will be a central part of the tracking system of the ATLAS experiment. The SCT consists of four concentric barrels of silicon detectors as well as two silicon endcap detectors formed by nine disks each. The layout of the forward silicon detector module presented in this paper is based on the approved layout of the silicon detectors of the SCT, their geometry and arrangement in disks, but uses otherwise components identical to the barrel modules of the SCT. The module layout is optimized for excellent thermal management and electrical performance, while keeping the assembly simple and adequate for a large scale module production. This paper summarizes th…

Radiation hardnessPhysicsNuclear and High Energy PhysicsLarge Hadron ColliderSiliconbusiness.industryDetectorATLAS experimentSemicondutor radiation detectorATLAS experimentchemistry.chemical_elementTracking systemddc:500.2VLSI readoutParticle detectorSemiconductor detectorchemistryHardware_INTEGRATEDCIRCUITSLHCThermal managementbusinessInstrumentationRadiation hardeningSilicon strip detectorComputer hardwareNuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment
researchProduct

Impact of Gamma Radiation on Dynamic R

2019

GaN high-electron-mobility transistors (HEMTs) are promising next-generation devices in the power electronics field which can coexist with silicon semiconductors, mainly in some radiation-intensive environments, such as power space converters, where high frequencies and voltages are also needed. Its wide band gap (WBG), large breakdown electric field, and thermal stability improve actual silicon performances. However, at the moment, GaN HEMT technology suffers from some reliability issues, one of the more relevant of which is the dynamic on-state resistance (RON_dyn) regarding power switching converter applications. In this study, we focused on the drain-to-source on-resistance (RDSON) char…

total ionizing dose (TID)high-electron-mobility transistor (HEMT)assurance testingradiation effectsgallium nitride (GaN)radiation hardnessArticleMaterials (Basel, Switzerland)
researchProduct

The Pion Single-Event Effect Resonance and its Impact in an Accelerator Environment

2020

International audience; The pion resonance in the nuclear reaction cross section is seen to have a direct impact on the single-event effect (SEE) cross section of modern electronic devices. This was experimentally observed for single-event upsets and single-event latchup. Rectangular parallelepiped (RPP) models built to fit proton data confirm the existence of the pion SEE cross-section resonance. The impact on current radiation hardness assurance (RHA) soft error rate (SER) predictions is, however, minimal for the accelerator environment since this is dominated by high neutron fluxes. The resonance is not seen to have a major impact on the high-energy hadron equivalence approximation estab…

Nuclear reactionProtonNuclear Theoryresonance: effectSingle event upsets01 natural sciences7. Clean energyResonance (particle physics)nuclear reactionelektroniikkakomponentitradiation hardness assurance (RHA)Detectors and Experimental TechniquesNuclear Experimentradiation: damagePhysicsLarge Hadron Colliderprotonscross sectionMesonsneutronitRandom access memorySEELarge Hadron Colliderpionsn: fluxNuclear and High Energy PhysicsprotonitMesonaccelerator[PHYS.PHYS.PHYS-ACC-PH]Physics [physics]/Physics [physics]/Accelerator Physics [physics.acc-ph]RHAsoft error ratesoft error rate (SER)hiukkaskiihdyttimetNuclear physicsFLUKACross section (physics)hiukkasetPion0103 physical sciencesNeutron[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]Electrical and Electronic Engineeringpi: interactionsingle-event effect (SEE)Neutrons010308 nuclear & particles physicsneutronsAccelerators and Storage RingsParticle beamsNuclear Energy and EngineeringsäteilyfysiikkahadronIEEE Transactions on Nuclear Science
researchProduct

Threshold Voltage Variability of NROM Memories After Exposure to Ionizing Radiation

2012

Threshold voltage (V-th) behavior of nitride readonly memories (NROMs) was studied after irradiation with photons (gamma-and X-rays), light and heavy ions. Both programmed and nonprogrammed single cells were investigated. The data suggest that two main physical phenomena are contributing to V-th variation and that the V-th loss and the variability can be modeled by a Weibull statistics with a shape parameter k similar to 2.2 regardless of the irradiation species and total dose. The same peculiarities were found in large memory arrays, confirming the results from single-cell studies but with significantly larger statistics. Hence, once the irradiation dose is known, the V-th loss distributio…

Materials sciencePhotonbusiness.industryoxide-nitride-oxide (ONO)radiation hardnessFlash memoriesShape parameterElectronic Optical and Magnetic MaterialsThreshold voltageIonizing radiationNon-volatile memoryFlash memories nitride read-only memories (NROMs) oxide–nitride–oxide (ONO) radiation hardness.nitride read-only memories (NROMs)OptoelectronicsIrradiationElectrical and Electronic EngineeringbusinessRadiation hardeningWeibull distribution
researchProduct

Radiation-hard semiconductor detectors for SuperLHC

2005

An option of increasing the luminosity of the Large Hadron Collider (LHC) at CERN to 10^35 cm^(- 2) s(- 1) has been envisaged to extend the physics reach of the machine. An efficient tracking down to a few centimetres from the interaction point will be required to exploit the physics potential of the upgraded LHC. As a consequence, the semiconductor detectors close to the interaction region will receive severe doses of fast hadron irradiation and the inner tracker detectors will need to survive fast hadron fluences of up to above 1016 cm 2. The CERN-RD50 project ''Development of Radiation Hard Semiconductor Devices for Very High Luminosity Colliders'' has been established in 2002 to explore…

Nuclear and High Energy Physicsradiation hard semiconductorsPhysics::Instrumentation and DetectorsSemiconductor detectorsRadiation Detector; LHCradiation hardness01 natural sciencesDefect engineeringSuper-LHCRadiation damageradiation detectorssilicon detectors0103 physical sciencesRadiation damageSuperLHCSilicon detectors; LHC; RD50 collaboration; radiation hardnessInstrumentationRadiation hardeningRadiation hardness010302 applied physicsPhysicsRadiation damage; Semiconductor detectors; Silicon particle detectors; Defect engineering; SLHC; Super-LHCLuminosity (scattering theory)Large Hadron ColliderRadiation DetectorInteraction pointRD50 collaboration010308 nuclear & particles physicsbusiness.industrySLHCDetectorRadiation hardness; silicon detectorsSemiconductor deviceSemiconductor detectorSilicon particle detectorsOptoelectronicsSilicon detectorsHigh Energy Physics::ExperimentLHCbusiness
researchProduct