Search results for "Radiation hardness"
showing 10 items of 10 documents
Impact of Gamma Radiation on Dynamic RDSON Characteristics in AlGaN/GaN Power HEMTs
2019
GaN high-electron-mobility transistors (HEMTs) are promising next-generation devices in the power electronics field which can coexist with silicon semiconductors, mainly in some radiation-intensive environments, such as power space converters, where high frequencies and voltages are also needed. Its wide band gap (WBG), large breakdown electric field, and thermal stability improve actual silicon performances. However, at the moment, GaN HEMT technology suffers from some reliability issues, one of the more relevant of which is the dynamic on-state resistance (R) regarding power switching converter applications. In this study, we focused on the drain-to-source on-resistance (R) characteristic…
Ionizing radiation effects on Non Volatile Read Only Memory cells
2012
Threshold voltage (V-th) and drain-source current (I-DS) behaviour of nitride read only memories (NROM) were studied both in situ during irradiation or after irradiation with photons and ions. V-th loss fluctuations are well explained by the same Weibull statistics regardless of the irradiation species and total dose. Results of drain current measurements in-situ during irradiation with photons and ions reveal a step-like increase of I-DS with the total irradiation dose. A brief physical explanation is also provided.
The pion single-event latch-up cross-section enhancement : mechanisms and consequences for accelerator hardness assurance
2021
Pions make up a large part of the hadronic environment typical of accelerator mixed-fields. Characterizing device cross-sections against pions is usually disregarded in favour of tests with protons, whose single-event latch-up cross-section is, nonetheless, experimentally found to be lower than that of pions for all energies below 250 MeV. While Monte-Carlo simulations are capable of reproducing such behavior, the reason of the observed pion cross-section enhancement can only be explained by a deeper analysis of the underlying mechanisms dominating proton-silicon and pion-silicon reactions. The mechanisms dominating the single-event latchup response are found to vary with the energy under c…
Radiation Hardness Assurance Through System-Level Testing: Risk Acceptance, Facility Requirements, Test Methodology, and Data Exploitation
2021
International audience; Functional verification schemes at a level different from component-level testing are emerging as a cost-effective tool for those space systems for which the risk associated with a lower level of assurance can be accepted. Despite the promising potential, system-level radiation testing can be applied to the functional verification of systems under restricted intrinsic boundaries. Most of them are related to the use of hadrons as opposed to heavy ions. Hadrons are preferred for the irradiation of any bulky system, in general, because of their deeper penetration capabilities. General guidelines about the test preparation and procedure for a high-level radiation test ar…
Technology of p-type microstrip detectors with radiation hard p-spray, p-stop and moderated p-spray insulations
2007
5 pages, 8 figures.-- PACS nrs.: 29.40.Gx; 29.40.-- ISI Article Identifier: 000249604700010.
Design and test of a prototype silicon detector module for ATLAS Semiconductor Tracker endcaps
2005
The ATLAS Semiconductor Tracker (SCT) will be a central part of the tracking system of the ATLAS experiment. The SCT consists of four concentric barrels of silicon detectors as well as two silicon endcap detectors formed by nine disks each. The layout of the forward silicon detector module presented in this paper is based on the approved layout of the silicon detectors of the SCT, their geometry and arrangement in disks, but uses otherwise components identical to the barrel modules of the SCT. The module layout is optimized for excellent thermal management and electrical performance, while keeping the assembly simple and adequate for a large scale module production. This paper summarizes th…
Impact of Gamma Radiation on Dynamic R
2019
GaN high-electron-mobility transistors (HEMTs) are promising next-generation devices in the power electronics field which can coexist with silicon semiconductors, mainly in some radiation-intensive environments, such as power space converters, where high frequencies and voltages are also needed. Its wide band gap (WBG), large breakdown electric field, and thermal stability improve actual silicon performances. However, at the moment, GaN HEMT technology suffers from some reliability issues, one of the more relevant of which is the dynamic on-state resistance (RON_dyn) regarding power switching converter applications. In this study, we focused on the drain-to-source on-resistance (RDSON) char…
The Pion Single-Event Effect Resonance and its Impact in an Accelerator Environment
2020
International audience; The pion resonance in the nuclear reaction cross section is seen to have a direct impact on the single-event effect (SEE) cross section of modern electronic devices. This was experimentally observed for single-event upsets and single-event latchup. Rectangular parallelepiped (RPP) models built to fit proton data confirm the existence of the pion SEE cross-section resonance. The impact on current radiation hardness assurance (RHA) soft error rate (SER) predictions is, however, minimal for the accelerator environment since this is dominated by high neutron fluxes. The resonance is not seen to have a major impact on the high-energy hadron equivalence approximation estab…
Threshold Voltage Variability of NROM Memories After Exposure to Ionizing Radiation
2012
Threshold voltage (V-th) behavior of nitride readonly memories (NROMs) was studied after irradiation with photons (gamma-and X-rays), light and heavy ions. Both programmed and nonprogrammed single cells were investigated. The data suggest that two main physical phenomena are contributing to V-th variation and that the V-th loss and the variability can be modeled by a Weibull statistics with a shape parameter k similar to 2.2 regardless of the irradiation species and total dose. The same peculiarities were found in large memory arrays, confirming the results from single-cell studies but with significantly larger statistics. Hence, once the irradiation dose is known, the V-th loss distributio…
Radiation-hard semiconductor detectors for SuperLHC
2005
An option of increasing the luminosity of the Large Hadron Collider (LHC) at CERN to 10^35 cm^(- 2) s(- 1) has been envisaged to extend the physics reach of the machine. An efficient tracking down to a few centimetres from the interaction point will be required to exploit the physics potential of the upgraded LHC. As a consequence, the semiconductor detectors close to the interaction region will receive severe doses of fast hadron irradiation and the inner tracker detectors will need to survive fast hadron fluences of up to above 1016 cm 2. The CERN-RD50 project ''Development of Radiation Hard Semiconductor Devices for Very High Luminosity Colliders'' has been established in 2002 to explore…